

Renewable Energy Working Group Illinois Commerce Commission Chicago, April 5, 2005

STRENGTHS

- NON-POLLUTING ELECTRICITY
- PEAK POWER ELECTRICITY
- HIGHLY DISTRIBUTIVE ELECTRICITY
- LOW MAINTENANCE ELECTRICITY
- MATURE AND GROWING TECHNOLOGY
- ECONOMIC DEVELOPMENT POTENTIAL

WEAKNESSES

- "CLOUDY" PERCEPTION
- HIGHER COMPARATIVE COST

Peak Power Electricity

- Illinois among the highest match of peak power electric need and photovoltaic power availability
- ELCC = Electric Load Carrying Capacity (source National Renewable Energy Laboratory)

(SOURCE: Natl Renewable Energy Lab)

PV ELCC map of U.S. (based on 500 utility loads)

Peak Power Electricity

- VALUE OF LOAD REDUCTION
 - AVERAGE \$100/MWh 58% Above Baseload
 - SUMMER \$250/MWh 460% times market price
 - Access needed to power pools like PJM
 - "PV Saves for All Ratepayers: Mid-Atlantic States Cost Curve Analysis 9/2002, JBS Energy
- VALUE TO PEAK ELECTRICITY IN POST-2006 REGULATORY ENVIRONMENT
 - Higher prices for Summer as well as daytime

"Cloudy" Perception

PVWATTS simulation - Natl Renewable Energy Lab, 1 kW AC, 30 degrees fixed angle due south

A solar electric system will work about as well in *Chicago* as one in Miami, Florida, around **88%**. A Chicago system can out-produce a Miami system in the summer.

"Sunnier Away From The Lake"

PVWATTS simulation - Natl Renewable Energy Lab, 1 kW AC, 30 degrees fixed angle due south

Other Illinois sites may be more productive than Chicago because of the "lake effect".

HISTORY OF PV IN ILLINOIS SINCE 1999

 ABOUT 2 MW INTERCONNECTED, **MOST IN ComEd TERRITORY** • SMALL SCALE, ONLY 3 INSTALLATIONS > 100 kWdc AVG SIZE 20 KW, INSTALLED COST \$10/kW BEFORE INCENTIVES RECENT INSTALLATIONS UNDER \$107kW

SMALL SCALE IS BEAUTIFUL

- IL has one of largest US small scale PV markets outside of Sunbelt
- Building Integrated Photovoltaics (BIPV) is a promising growth market
 - Replace curtain walls, canopies, windows, awnings, etc. with clean power generation
 - Market can eventually total hundreds of thousands of square feet in Illinois, 5-10 MW of capacity by 2012

- Cost reduction of replacing building materials and design elegance

makes BIPV appealing

PHOTOVOLTAIC MARKET HAS NEAR EXPONENTIAL GROWTH

World Annual Photovoltaic Production - Peak MW

THIS GROWTH HAS CAUSED PRICE DECLINES TO SLOW

WHAT IS NEEDED FOR SIGNIFICANT PV MARKET?

- MULTI-MEGAWATT SCALE
 - Requires 2-3 acres/MW
 - Distributive values of PV will still work below substation level
- INTERCONNECTION POLICY UNDER CONSIDERATION
- POWER PURCHASE AGREEMENTS => 20 YRS
- USE OF THIRD-PARTY FINANCING AND/OR LEASING AGREEMENTS
- ACCESS TO INCENTIVES TO FILL GAP

WHAT IS NEEDED FOR SIGNIFICANT PV IMPACT?

ILLINOIS SUSTAINABLE ENERGY PLAN	8% of electricity generated from renewable energy sources 2% from non-wind sources
Illinois electricity generated in 2002 (USEIA State Electricity Profiles 2002 Table 1. Summary Studies)	188,054,449 MWh
0.1% to be generated by photovoltaic systems by 2012	188,054 MWh
Capacity required @ 1497/MWh-MWac	126 MW peak AC
0.2% generated by 2012	252 MW peak AC
0.5% generated by 2012	630 MW peak AC

WHERE WOULD THESE SYSTEMS GO?

- Open lands not impacted
- Brownfields
- Right-of-ways
- Landfills
- Parking lots
- Power plant buffer zones
- @ 2-3 acres/MWac, need 250-2000 acres, or ½ to 3 square miles
- Proximity to transmission at or below substation level

INSTALLATIONS ON A MULTI-MEGAWATT SCALE

& COST / MIMILE

1 MEGAWATT AC PV SYSTEM DELIVERING 1,400 MWH AVG YEAR

COSI/MW	\$ COST/MWH			FINANCING	
\$MM	10 Yrs	20 Yrs	30 Yrs		
\$8	\$571.40	\$285.71	\$190.48	INSTALLED	
\$7	\$500.00	\$250.00	\$166.67	WITHOUT INCENTIVES	
\$6	\$428.57	\$214.29	\$142.86	TAX CREDITS, DEPRECIATION	
\$5	\$357.14	\$178.57	\$119.05	DEPRECIATION	
\$4	\$285.71	\$142.86	\$95.24	ADDITIONAL INCENTIVES	
\$3	\$214.29	\$107.15	\$71.43	TINCENTIVES	

WHAT WOULD BE EMPLOYMENT IMPACT?

NUMBER OF JOB-YEARS CREATED FOR FIVE YEAR PERIOD							
	SCENARIOS OF % OF ELECTRICITY FROM PV BY 2012						
	0.1%	0.2%	0.5%				
# MWs 5-yr period	126	252	630				
#MWs/yr	~25	~50	~125				
Jobs-yrs in design, contract and service per yr	397	794	1,985				
Include job-yrs in panel and component manufacturing	767	1,534	3,835				
Include job-yrs in cell and basic material manufacturing	887	1,774	4,435				

Renewable Energy Policy Project "The Work That Goes Into Renewable Energy, 1999, www.repp.org

THANK YOU!

Mark Burger Spire Solar Chicago Chicago Center for Green **Technology** 445 North Sacramento Blvd Chicago, IL 60612 773-638-8700x228 mburger@spirecorp.com www.spiresolarchicago.com